Associations between circulation pattern frequencies and sea ice minima in the western Arctic
نویسندگان
چکیده
In this study, a synoptic climatological approach is employed to assess the relationship between the frequency of circulation patterns (CPs) and the latitude of mid-September sea ice minima in the western Arctic. Fifteen CPs are created via principal component analysis and cluster analysis from daily NCEP/NCAR reanalysis sea-level pressure (SLP) fields across a grid from 50 to 90◦N and 150◦E–100◦W from 1979 to 2011. The frequency of these CPs are statistically compared with the latitude of the sea ice minimum from passive microwave data for each of 11 equally-spaced longitudes (176◦W to 126◦W) extending into the Chukchi and Beaufort Seas. Monthly frequencies for each of the 15 CPs from March to September, signifying the melt season, for each year are correlated with the ice minimum for that September. These monthly frequencies are then entered into a stepwise multiple linear regression (SMLR) and collectively, CP frequencies explain 40–79% of the total ice retreat variance across the longitudes. The frequency of one cluster, CP 11, representing a broad high pressure area over the Beaufort Sea, is highly correlated with the latitude of the sea ice minima; June and August frequencies of this pattern are the initial predictors at 8 of the 11 longitudes and explain 22–32% of the variance. This pattern has occurred more frequently from 2007 onwards; compared with a June mean occurrence of 9 days during 1979–2006, CP 11 occurred 16 times in June 2007, and on average more than 17 days per month during June 2008–2011. The Arctic Dipole (AD), Arctic Oscillation (AO), and Pacific-North American (PNA) pattern indices are significantly correlated with CPs 11–13 frequencies throughout certain summer months, further indicating strong relationships between summer circulation and sea ice minima in the region.
منابع مشابه
Changes in the climate of the Alaskan North Slope and the ice concentration of the adjacent Beaufort Sea
A reliable data set of Arctic sea ice concentration based on satellite observations exists since 1972. Over this time period of 36 years western arctic temperatures have increased; the temperature rise varies significantly from one season to another and over multi-year time scales. In contrast to most of Alaska, however, on the North Slope the warming continued after 1976, when a circulation ch...
متن کاملThe combined influences of autumnal snow and sea ice on Northern Hemisphere winters
Past studies have demonstrated a significant relationship between the phase and amplitude of the Northern Annular Mode (NAM) and both Arctic sea ice and high-latitude snow cover during boreal autumn. However, those studies have considered these forcings separately. Here we consider the collective effect of Arctic sea ice and snow cover variability for producing skillful subseasonal forecasts fo...
متن کاملImpact of the Atlantic Meridional Overturning Circulation (AMOC) on Arctic Surface Air Temperature and Sea-Ice Variability
The simulated impact of the Atlantic Meridional Overturning Circulation (AMOC) on the low frequency variability of the Arctic Surface Air temperature (SAT) and sea-ice extent is studied with a 1000 year-long segment of a control simulation of GFDL CM2.1 climate model. The simulated AMOC variations in the control simulation are found to be significantly anti-correlated with the Arctic sea-ice ex...
متن کاملImpact of melt ponds on Arctic sea ice simulations from 1990 to 2007
[1] The extent and thickness of the Arctic sea ice cover has decreased dramatically in the past few decades with minima in sea ice extent in September 2007 and 2011 and climate models did not predict this decline. One of the processes poorly represented in sea ice models is the formation and evolution of melt ponds. Melt ponds form on Arctic sea ice during the melting season and their presence ...
متن کاملThe Relation among Sea Ice, Surface Temperature, and Atmospheric Circulation in Simulations of Future Climate
Observations document substantial 20-40 year trends in the past several decades in the Arctic. Studies show sea ice thickness and extent have declined, air temperature has increased, and the temperature and salinity of the upper ocean have increased (e.g., see Serreze et al., 2000). At the same time, we have seen a weakening of the tropospheric anticyclone over the Beaufort Sea that can be asso...
متن کامل